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Disclaimer

e | work on quantum gravity, but this talk will not
(explicitly) be about quantum gravity.

e | care about this problem mainly because I'm
interested in the (approximate) emergence of
spacetime from a (more) fundamental Hilbert-

space description.
« (Including, but not limited to, a holographic description.)
e But (I hope) the results will be interesting more
generally.
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State Reduction in QM, QFT, and QG
l. Math Interlude: Matrix Algebras
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V. Toy Examples

V. Beyond Algebras
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11/5/2019 Jason Pollack  Quantum State Reduction - Bipartitions from Observables



|. State Reduction in QM, QFT, and QG

e How should we describe the state of a system we
have only limited information about/can only
perform a limited set of measurements on?

e (The most general answer involves Bayes’ Theorem,
priors, etc, but I’ll restrict to physical systems.)

e In QM/QFT we’re used to answering as follows:
trace/integrate out the degrees of freedom we
don’t keep track of to arrive at a reduced density
matrix.
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The Partial-Trace Map

e Start with a Hilbert space H and a state|y) € H or
p € L(H).

e Ifthe Hilbert space is bipartite, H = Ha ® H ;|
there is a natural state-reduction map onto mixed
states in L(H ), the partial-trace mapp +— pa =trjp

e The reduced state pa indeed preserves information
about a limited set of measurements on the original
state: the expectation values of O4 in this state are
the same as those of O4®1; in the full state.

e However, this is not the most general such map.
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Warmup: Classical Physics

e Classical microphysics: choice of
phase/configuration space, time evolution law
(= implies symmetries + conserved quantities)

« Gas of particles in a box, mass distribution in galaxy, ...
e Microstates = points in configuration space

e Arbitrary macrostates = collections of/distributions
over microstates (“coarse grainings”)

e Good macrostates = possible to measure
macroscopically, approximately preserved under
time evolution (macrostates evolve to macrostates)

» States with definite values of thermodynamic/hydrodynamic
oroperties, planets/stars, ...
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The Decoherence Picture

e Now let’s try to map this back to the QM picture.

« Phase space = Hilbert space
« Macrostate = reduced density matrix
« Macrostates evolve to macrostates =2 reduced density matrix
remains nearly diagonal in some basis under the action of time
evolution
e The (Zurekian) decoherence program, given a system-
environment split and a decomposition of the Hamiltonian
H=HqxIgp+H,+1Is® Hg, tells us which initial states
and choices of interaction lead to this branching/evolution
without interference.

e So a partial-trace map tracing out the environment describes
a classical coarse-graining when decoherence occurs.
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Beyond the Partial-trace Map

e However, most coarse-grainings cannot be described in the
decoherence picture—just the coarse-grainings which
preserve observables on a single factor of a bipartite
Hilbert space.

« Collective or averaged observables, in particular, don’t take this
form but are very natural laboratory quantities.

« The Hilbert space may not factorize in a simple way. In particular,
we can’t apply the partial-trace map to get a good notion of a
state restricted to a spatial region in field theories, or theories
with global constraints like gauge or gravitational theories.
e We'd like more general state-reduction maps which we can
apply in these cases—and which output bona fide reduced

states so we can compute entropy and check decoherence.
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Bipartitions

e Let’s consider what general state-reduction
maps from one (space of operators on a)
Hilbert space to another look like.

e If we already have a bipartition/factorization
that includes the target Hilbert space, this is
just a matter of explicitly specifying which
states in the original space are mapped to the
various basis states in the target space.
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Factorization: H, @ Hp |ai,br) == |a;) @ |by)
Bipartition table | @1:01 | 1,02 |--- | a1, b,

a,by | as,ba |---| ai,baq,

adAabl a‘dAabQ a’dA:de
Bipartition operators for each pair of columns

Skl ‘= Z |ai?bk> <a‘in bﬂ| =1 ® |bk> <bl|

1=1...da
State reduction p+—

2. 1

k,=1...dp

= ) tr(I®bk) (bl p) |bi) (br| = tra(p)

ki=1...dg

7 (Skip) [br) (bk|
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e Preserves subspace a1, by | a1,ba |--- | a1, ba,
:b :b ?b B

of operators ‘“. L ‘12_ - ‘“."*
Span {I® |bk> <bl’} — {I® OB ‘ OB E B(%B)} ad,q:bl adAabQ adAede
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Two-Qubit Example

Op 1p eveng oddp
04 | 00 | 01 04 00 01
14| 10 | 11 14 11 10

¢ Different arrangements of the table -
different factorizations/state-reductions

V =104) |evenp) (00| 4+ |04) |oddp) (01| + |14) |oddp) (10| + [14) |evenp) (11|

e Maps Bell state |00) + |11) to the unentangled
state |04) |evenp) + |14) |evenp)
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Generalized Bipartitions

e We can consider arrangements more general than a
single rectangular table:

T T
L
€a1 | €22 | " N
; ; . HZEEH%@HBG
- - . q

e (We can also consider generé’l non-rectangular
tables, but for most of this talk I’ll restrict to the
case of block-diagonal tables.)
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e | he state reduction map is now

pp =tray (p) =) > tr(She) [bf) (o]

q ki

= Zt’rA (pq) € L(HB) Hp == D, Hs,

e This is not the partial-trace map on #!

e However, we can embed % into a larger space,
Ha @ Hp = @HAq ® (@ Hp, | = @’HAQ ®HB,,
q q

q,q9’

¢ In this “diagonal embedding” the partial-trace
map tr, does map states in the auxiliary space
supported on H to states in the reduced space.
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e To understand what sorts of state-reductions
these generalized BPTS are describing, we need
to talk about matrix algebras and their
irreducible representations.

» Can equivalently talk about vN algebras, but it will
be convenient to have the explicit description of
operators as matrices, with particular eigenvalues
and eigenspaces, in mind. Will only work explicitly
with finite-dimensional cases, where both pictures

are identical.
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Il. Matrix Algebras

Definition 2.1. A matrix algebra is a subset A C L (H)
such that for any My, Ms € A and c € C:

(1) My + My e A

(2) MiM, € A

(3) cM; € A

(4) M} € A

o Any set of matrices M := {M, M,,..My}

generates an algebra A := (M, M, .. M,) by
taking the closure of the set under the
operations in the definition. Note that the
algebra includes products, so is not just the

span of the set.
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The Wedderburn Decomposition

Theorem 2.2. (Wedderburn Decomposition) For every algebra
A C L(H), the Hilbert space H decomposes into

H = {@HAQ ® Hp,

1

P Ho

such that every element M € A is of the form

M = @ 0,

@ 1 Ay @ M B,
q

where 14, is the identity on Ha, and Mp, 1s any matriz on Hp

q’

and all matrices of this form are elements of A.

e This is the decomposition of H into irreps of
the algebra A.
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e That is, there is some basis for H where all
elements of the algebra are block-diagonal:

(41 \

(I’ml @ Al
I'm,g & AQ
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Algebras from BPTs

e The decomposition can be described by a
block-diagonal generalized BPT, with each
block giving a product basis for a NV, ® M,

q
€11

q
€19

q
€13

q
€14

q
€91

q
€99

q
€93

q
€94

q
erl

q
6?‘2

q
67'3

q
8?’4

N, ® M,

e The BPOs form a basis spanning Alg (O), with a
simple action under products S%S%,, = 66,4 5%,

e Hence the BPOs are “minimal projections”.
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Statement of Our Problem

e S0, we've seen that the irrep decomposition of a
Hilbert space w/r/t an algebra of observables
generates a state-reduction map onto a smaller
Hilbert space which preserves the expectation
values of elements in the algebra.

e Given a set of generators of the algebra, we want a
way to explicitly construct the state-reduction map.
The main technical result of our paper is an
algorithm for accomplishing this.

e First, though, let’s briefly think about where the
choice of algebra comes from.
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Operational vs. Variational

e In the operational picture, we’re just given a
set of allowed measurements.

¢ In the decoherence approach, we have in mind
that each measurement is implemented by
some particular interaction Hamiltonian
between our apparatus and the system, and a
good measuring apparatus is precisely one for
which the “pointer states” of the apparatus are
both correlated with system states and
classically distinguishable.
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e When the irrep decomposition of the Hilbert
space with respect to the observables contains
multiple terms, we think of the Hilbert space as
having different superselection sectors. Given
our operation constraints, superpositions of
states in different sectors are unobservable and
unpreparable.

e If we can prepare the system we can also
typically let it undergo time evolution, so
typically we mean that the Hamiltonian does
not mix superselection sectors.
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e We could instead ask a different question: what are
the algebras which lead to interesting
decompositions of a given Hilbert space? This is a
variational approach, in which we imagine varying
over possible choices of observables, or
arrangements of generalized BPTs. Usually we want
some compatibility between the decompositions
and the Hamiltonian, like in decoherence.

e We can ask, for example, what the “most classical”
observables are, provided we have a good measure
of this. I'll return to this question later.
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I1l. Sketch of the Algorithm

e The algebra takes as input a (finite) set of
observables acting on a (finite-dimensional)
Hilbert space and outputs the generalized BPT
which describes the irrep structure of the
algebra they generate.

e We can use this BPT to write any element of
the algebra in block-diagonal form, or for state
reduction.

e We'll construct the BPT by constructing the
bipartition operators directly.
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Algorithm 1 Irrep decomposition of matrix algebra

1: procedure IRREPDECOMPOSITION(M)

2: SpecProjs < GETALLSPECTRALPROJECTIONS(M)

3: Reflect Net < SCATTERALLPROJECTIONS(SpecProjs)
4 ReflectNet < ESTABLISHMINIMALITY (Reflect Net)

5 Reflect Net < ESTABLISHCOMPLETENESS(Re flect Net)
6: BPT < CONSTRUCTIRREPBASIS(Reflect Net)

7: return BPT

8: end procedure

e | won’t be as explicit here as we are in the
paper, and | won’t prove the correctness of
each step, just sketch how it works.
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e Instead of working directly with observables, it’s
convenient to work with the projectors onto
distinct eigenspaces given by their spectral
decompositions (which generate the same

algebra):
Ti spec dec. {HZ }

e In general, projectors in the decomposition of one
observable will not commute with generators of
another observable, so to get a set of BPOs which
are all orthogonal with each other we need to
decompose these initial projections further.
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Scattering

e “Scatter” products of projectors, i.e.
decompose them into new projectors.

[eTI°TI® = T19% + >, ARII¢ + OTIE e scatter [19° 114...112
IPIIE =TI+ 375, AlT} + O I1° [14°, 115...11%

I, >_< ™ ™ 4+l
I, o 4+ 4 L+l

2

e The scattering operation reduces rank—the
resulting projectors are lower-dimensional and
more fine-grained.
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Iterating Scattering

e Repeat process until all scattering is trivial
(projectors reflecting or orthogonal)

[TeTI°T1® =  AII@
[IPTI°T1P = \ITP
11 scatter [1°
—

p Hb Hb
[TeTIPT1 = OII®

k [1°T1°11° = QIT°
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Graphical Representation

e Define a graph structure (“reflection network”):
projectors are connected if they are reflecting,
disconnected if orthogonal. Start with the relation
between all projectors unknown (dashed line), and
update by scattering to resolve each unknown
relation:

(a) (b)
I, l—l(’ll) n{lf)l:) l-I(l'U) I, H{IAIJ
Scatter I I - Scatter |
2 0
M 3k m? .. 0y M I ry”
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Minimality and Completeness

e Need additional criteria: all projections in the
network should be minimal w/r/t the algebra,
and there should exist a subset of the
projectors in the network that sums to the
identity I, of the algebra.

e Reduces to checking properties of the network,
+ adding additional projectors and repeating
scattering if necessary—ask me if interested.
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Constructing the BPT

e Finally, to construct the BPT, in each connected
component we choose a basis for the eigenspace of
one projector in the BPT, which forms the first
column of the block. Then we construct the
remaining columns by traversing the graph between
this projector and other projectors in the subset,
which defines isometries between the eigenspaces
of the projectors.

5131252151(1;— ZIH S(IT Z S |S;11T: Z |(qu> <(:11i

t=1..7q t=1..rq
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IV. Toy Examples

e First consider a very simple eight-dimensional
model to which we can apply the algorithm.

Mz == (1) (1] + [2) (2] + [3) (3] + [4) (4]
Mx, = |37 (F37| 4 |F1256) (+1256)

|537) i= — (13) + 7))

Sl

|[F1256) .= = (|1) +[2) +5) +6))

B | =

Hzo: =11z, ,lxo:=1-1lx,

(ZjX> —_ (HZ;]_:HZ;Q:HX;l?HXiQ)
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1z, wn JTx.q 17,
(a)
H(Zl;{;z) .| HX;] BONRRANRNRA RN nnnnRnnnnmm l—[Z;z H(lflz) ‘3 3| _I_ |+12 +12‘
) = |4) 4] + | +1) (+
0)
I
(b) ’
g/ M. Iy
* | ’ Wyh” = I7) (7] + [£2%) (%]
,é’L — [8) ( _*ﬁ> 3.
(0) (0)
( ) l_IZI l—[Z;Z
C
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e The reflection network has three connected
components. For the single-element components,
we’ll choose to use the same basis: the single-

4
column blocks are A and S
—2 —6
e For the three-element component, choose
{ /2 1,*2)} ) 3
Zi1 as the basis. As before, take = as the
first column. Then the isometrv IS
Sg ~ H 1/2 H H(I/Z) |7> <3| + = 1 —I—)(}> <+12|

so the second column is =
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e Hence the full BPTis [ 4

+1

+95

—6

+12 +56

e The Hilbert space decomposition is
H=Hsr ®BHa, ®Ha, @ HpB,
e All operators in the algebra have the form

M = ci1a, + c2la, + 14, ® Mp,. In particular, write
Z =allz., +bllz.9 and X = cllx. + dllx.o
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e Now we can block-diagonalize the generators by
mapping the original basis into the BPT basis:
{11),12),13),14),15),16),17), 18)} —> {14}, |£2) . 18) . |£6) . 13) , 17}, [£7%) , | 2°°) }

i ) e )

a a
a b
a b
b a

b b

. . 1 ,
('—id ('1"-13(1 (‘;d C . d d
c+d c—d
[ 2 (1
d d
X = —d c—d c+3d » el ) c+d c—d
| 4 ! 4 2 2
c—d c—d —d c+3d c—d +d
4 4 1 4 2 2
—d c+d c+d c—d
) D) 2 )



Decomposition of Angular Momentum

e Consider a single particle with spin %2 and

orbita
know

angular momentum /. Of course we
now to decompose the total angular

momentum using Clebsch-Gordon coefficients,
but we can reproduce this result using
scattering of projections.

11/5/2019
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e Observables J. =L, @I+ 1®S, forall axesr
e Decompose

H o |r;il?i%> (r; il,i% my| =1+ %
rmy . | 1
stz:i:lf? irimy —mg,mg) (r;my —mg,mg|  |my| <1+ 3.

e Sufficient to consider the algebra generated by
{J.,, .}, since rotations ¢’z etc are in it.

e SO0 we need to scatter projections in the set

ULmy s Ham, § . The projectors with
maximal/minimal values of  are rank 1, so
do not break under scattering.
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1 1
x;l, —>
2

e We compute |Z;l—|—%,mJ> = ———]1
L 1 l—mJ—i—%
“’”*5"§>\/ 2+ 1

\/m Zim g
1 1 [ —my— %
z’m"—§’§>\/ A+1
1 1 ,
zZymy + X ——> cl_:‘l,m.].

1 1 ,
Sy e, Cl—}—l,rn,_/+ -

T
e 50 the CG result is reproduced, and the BPT is

Hr @ Hg = HI+2) @ (-3)

e Coherences between sectors are not observable.
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Collective Observables

e As a toy model of collective observables, we
consider a bound pair of identical particles on a
lattice of length D, constrained so that their
relative position and momentum differ by at
most one site. We restrict to center of mass
measurements of both position and
momentum, and look for the irrep structure of
<Xr-'ffru R-'m> .
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¢ In the position basis, th%_rpomentum states are

1 .

i2m(myny +mang)/D
pimi,me) = F|x;my,me) = 5 E gi2m(mini+manz)/ lx;n1,n2)
ni,n2=0

e The spectral projections are

Iy = |z5n,n+ 1) (x;n,n+ 1|+ |z;n+ 1,n) (x;n + 1, n|
I, = |p;m,m+ 1) (p;m,m+1| 4+ |p;m+ 1,m) (p;m + 1, m|

e SO we need to scatter these states.
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e A calculation I'll skip shows that II,;, breaks to
n2+11) , with T == [xa (¢)) (xa (¥)], and
similarly for 1%, := [thm (9)) (¢m (¢)|, With

Ixn () = (|r n,n+1) + e |z;n+ 1,n))

waw

1t () 1= (Ip;m,m + 1) + €' |p;m + 1,m))

We have
{xn (@) |t (b)) = V2 cos ((b —|—2a) "T) (eiQﬂ/D + e—z‘cm) pi(b+a)m/2 ji2m(2nm+m-+n)/D

So for a=0 and b=1, etc, there is no overlap.
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e So the reflection network breaks into two
components, {119, 1%, } and (1) 1)}
e Then the BPT consists of two blocks,

X0 (0) | x1(0) | --- | xp-1(0)

xo () | x1(m) | - | xp-1(7)

Hi @ Hy = HO @ U™ -
e That is, the Hilbert space splits into

superselection sectors corresponding to
symmetric and antisymmetric configurations:
an observer sees a composite particle with a
discrete “charge” which is conserved given
compatible dynamics.
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V. Beyond Algebras

e So far we've worked with block-diagonal BPTs,
where the span of the bipartition operators
formed an algebra.

e However, in general this need not be the
case—operationally, we could imagine we have
access to certain observables but not their
products.
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Partial Bipartitions

e We can consider more general tables, which
need not have rectangular blocks:

€1:1,1 | €1;1,2

€1:2.1

€2:1,1 | €2;1,2

€2;2,1

e Now each block still defines a state-reduction
map from #, to Hp,, which however need not
be a tensor factor: we write H,=Ha, ©Hp, and
say that Hs, is a partial subsystem of H, .

11/5/2019 Jason Pollack  Quantum State Reduction - Bipartitions from Observables



e The typical example we have in mind is a set of
collective degrees of freedom as a partial
subsystem, H = Scollective @ Sinternal , SUCh as the
reduction from a set of N spins to the total spin:

N N N N N N N N _N
7. t3 2:1t2 | 5,411 5.0 1] 5,2 2>

—
27

242 | 2,41 [ 20 | 2,—1 | 2,-2
1,41 1.0 1,—1

I,+1 1,0 I,—1
0,0

0,0
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Ising Model

e There are many possible partial BPTs which

11/5/2019

reduce onto the same partial subsystem, which
we can get by e.g. swapping basis elements
within the same column. Such BPTs with
different row structure are naturally
investigated variationally: different BPTs
preserve coherences differently under time
evolution, depending on the action of the
Hamiltonian.

See our paper for an Ising model calculation,
which | won’t have time to talk about today.
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V. Applications

e Direct Ql applications (error correction,
noiseless subsystems, qguantum channel
design)

« Won’t discuss here—talk to me if interested!
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Bulk Reconstruction

e Think of classical states in AdS/CFT as living in
coarse-grained Hilbert space—track only low-point
correlation functions of bulk fields

« > Holographic QEC approach to bulk reconstruction
« Want to understand how this is implemented in the CFT

¢ In an explicit toy model (e.g. tensor network), could
use our state-reduction methods directly

» E.g. probe complementary nature of bulk by restricting
to observables inside a lightcone

o Check when “bulk” and “boundary” state-reduction
maps vield same output—>construct holographic states
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Edge Modes

e When a field theory has global constraints (e.g.
gauge/global symmetries), physical Hilbert space
does not factorize 2 can’t work with usual mode
expansion/trace outside subregion

« Toy example: 3 qubits with Z, symmetry

e In edge modes program, define states on
subregions by embedding into larger, ungauged
Hilbert space (not unique: sum over charged reps)

e Our approach: start with allowed operators,
produce state-reduction map (implies diagonal
embedding into auxiliary Hilbert space)
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Quantum Gravity

e If QG is qguantum-mechanical, contains non-field-
theoretic states (superpositions of geometries,
stringy states, spacetime foam...)

» ...SO states well-described around a fixed background are
unlikely to be simple factors of the QG Hilbert space (c.f.
holography/dS complementarity)

e In “space from Hilbert space” picture, local spatial
dofs are emergent

+ GBPs are a tool which precisely picks out dofs not
manifest in the full Hilbert space!

» Dynamics between these dofs + rest of theory can pick
out classical observables—variational approach?
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...and more

e Potentially many other applications

« If you have an set of observables you’re interested
in, our technology may be able to help! We should
chat...
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Thank youl!
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Proposition 2.5. Let M be a self-adjoint matriz with the spectral decomposition
M =" Al
k

where \ are distinct (non-zero) eigenvalues and I are projections on eigenspaces. Then

(M) = span {Il} .

This fact can be shown by first identifying the identity element I/)s in this algebra (it does
not have to be the full identity matrix). The identity element is constructed using the minimal

polynomial p () of M (that is, the smallest degree polynomial for which p (M) = 0) and the fact
that for self-adjoint matrices the minimal polynomial is of the form p(z) = f(z) or p(z) = zf (x)
where f is such that f (0) # 0. Then

Iapy = f (M_) f_(é)f ) ¢ (M) (2.25)

acts as the identity on M, and uniqueness of the identity implies that

Iy = Z I (2.26)
k

With the identity, we can re-express the spectral projections as

I =] fAk Y —~ e (M). (2.27)
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M, 11,,...I1,,

\/A’Ul v2 A'U?’UB T A'Un —1Un

Lemma 4.6. Let {II,} be a set of projections forming a proper reflection network and let {Sy} be

the set of all path isometries in the network as defined by Eq. (4.35). Then, the following statements
are equivalent:

(1) Every 11, is a minimal projection in the algebra A := ({Il,}).
(2) Sy o Sy for all paths v, w that share the same initial and final vertices.

Proposition 4.7. In the setting of Lemma 4.6, let v, w be two paths that share the same initial

v1 = uq and final v, = w,y, vertices but Sy, K Sy. Then, the spectral projections {H("")} of U := SvSL
have the following properties:

(1) Each TIW) is in the algebra A := ({II,}).
2) Each TI®) s not reflecting with 1L, .
g 1
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Completeness

Lemma 4.8. Let {II,, } be the largest subset of pairwise orthogonal projections in the reflection
network of {Il,}, where all T1,, are minimal in the algebra A := ({I1,}). If there is a v such that
I 411, # 11, then, with the appropriate normalization factor ¢, the operator (here I is the full identity
matriz and 14 is given by Eq. (4.40))

I1, := s (F— LA AT — La), (4.41)

c
has all of the following properties:
(1) 11, is a minimal projection in A.
(2) 11, is orthogonal to all {I1,, }.
(3) The operator I 4 := I 4 + 11, is such that 1411, = II,,.
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Partial BPT example

11213
415 (ﬂu P12 P13 P14 P15 P16
6 P21 P22 P23 P24 P25 P26
P31 P32 P33 P34 P35 P36
P41 P42 P43 P46
P51 P52 P53 P56

P61 P62 P63 P64 P65 P(‘iﬁ/

b trea
P11 + P12 + P13
p21 + P22 + + pe6 P23
P31 P32 P33
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Table 2: (color online) The 6 selected, quasi-classical BPTs which maximize Qgpt as a measure
()f (lyn(uni(al coherence for N

Z“ lm’ ). Allowed transitions by the Hamiltonian flip single bits in the {|0),|1)} basis.
Statcb in the middle two columns not connected by Hamiltonian transitions are shown by the same

color.

11/5/2019

000 | 001 | O11 | 111
110
100 | 107

000 | 001 | 101 | 111
011
100 | 110

000 011 | 111
001 | 101
100 | 110
000 110 | 111
001 | 011
100 | 10

Jason Pollack
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000 | 100 | 101 | 111
001 | 011
110

000 | 100 | 110 | 111
001 | 101
011

3 spins corresponding to the compatible collective observable
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Figure 4: Plot of average entanglement growth rate Qgpr over different BPTs (different row arrange-
i L . . . 3 ( .
ments) for N = 3 spins with the compatible collective observable M, = 37 lr:r;m corresponding

to a value of g = 0.5 < Geyiy -
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Figure 6: Plot of average entanglement growth rate Qgpr over different BPTs (different row arrange-

3 (p)

ments) for N = 4 spins with the compatible collective observable M, = z“ oz corresponding to

a value of g = 0.6 < gt The inset shows the first few classes of BPTs with lowest values of Qgpr.
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