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Jason Pollack

I work on quantum gravity, but this talk will not 
(explicitly) be about quantum gravity.

I care about this problem mainly because I’m 
interested in the (approximate) emergence of 
spacetime from a (more) fundamental Hilbert-
space description.

(Including, but not limited to, a holographic description.)

But (I hope) the results will be interesting more 
generally.

Disclaimer
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I. State Reduction in QM, QFT, and QG

II. Math Interlude: Matrix Algebras
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V. Beyond Algebras

VI. Applications

Outline
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How should we describe the state of a system we 
have only limited information about/can only 
perform a limited set of measurements on?

(The most general answer involves Bayes’ Theorem, 
priors, etc, but I’ll restrict to physical systems.)

In QM/QFT we’re used to answering as follows: 
trace/integrate out the degrees of freedom we 
don’t keep track of to arrive at a reduced density 
matrix.

I. State Reduction in QM, QFT, and QG
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Start with  a Hilbert space      and a state                or

. 

If the Hilbert space is bipartite,                            , 
there is a natural state-reduction map onto mixed 
states in             , the partial-trace map                         

The reduced state       indeed preserves information 
about a limited set of measurements on the original 
state: the expectation values of        in this state are 
the same as those of                in the full state.

However, this is not the most general such map.   

The Partial-Trace Map
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Classical microphysics: choice of 
phase/configuration space, time evolution law 
(→implies symmetries + conserved quantities)

Gas of particles in a box, mass distribution in galaxy, …

Microstates = points in configuration space
Arbitrary macrostates = collections of/distributions 
over microstates (“coarse grainings”)
Good macrostates = possible to measure 
macroscopically, approximately preserved under 
time evolution (macrostates evolve to macrostates)

States with definite values of thermodynamic/hydrodynamic 
properties, planets/stars, …

Warmup: Classical Physics
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Now let’s try to map this back to the QM picture.

Phase space → Hilbert space

Macrostate→ reduced density matrix

Macrostates evolve to macrostates→ reduced density matrix 
remains nearly diagonal in some basis under the action of time 
evolution

The (Zurekian) decoherence program, given a system-
environment split and a decomposition of the Hamiltonian

, tells us which initial states 
and choices of interaction lead to this branching/evolution 
without interference. 

So a partial-trace map tracing out the environment describes 
a classical coarse-graining when decoherence occurs.

The Decoherence Picture
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However, most coarse-grainings cannot be described in the 
decoherence picture—just the coarse-grainings which 
preserve observables on a single factor of a bipartite 
Hilbert space.

Collective or averaged observables, in particular, don’t take this 
form but are very natural laboratory quantities.

The Hilbert space may not factorize in a simple way. In particular, 
we can’t apply the partial-trace map to get a good notion of a 
state restricted to a spatial region in field theories, or theories 
with global constraints like gauge or gravitational theories.

We’d like more general state-reduction maps which we can 
apply in these cases—and which output bona fide reduced 
states so we can compute entropy and check decoherence.

Beyond the Partial-trace Map
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Let’s consider what general state-reduction 
maps from one (space of operators on a) 
Hilbert space to another look like. 

If we already have a bipartition/factorization 
that includes the target Hilbert space, this is 
just a matter of explicitly specifying which 
states in the original space are mapped to the 
various basis states in the target space.

Bipartitions
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Factorization:

Bipartition table

Bipartition operators for each pair of columns

State reduction 
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Preserves subspace 
of operators
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Two-Qubit Example
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Different arrangements of the table →
different factorizations/state-reductions

Maps Bell state                     to the unentangled 
state  
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We can consider arrangements more general than a 
single rectangular table: 

(We can also consider general non-rectangular 
tables, but for most of this talk I’ll restrict to the 
case of block-diagonal tables.)

Generalized Bipartitions
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3-Spin Example
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The state reduction map is now 

This is not the partial-trace map on      !

However, we can embed       into a larger space,

In this “diagonal embedding” the partial-trace 
map trA does map states in the auxiliary space 
supported on      to states in the reduced space. 
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To understand what sorts of state-reductions 
these generalized BPTS are describing, we need 
to talk about matrix algebras and their 
irreducible representations.

Can equivalently talk about vN algebras, but it will
be convenient to have the explicit description of 
operators as matrices, with particular eigenvalues 
and eigenspaces, in mind. Will only work explicitly 
with finite-dimensional cases, where both pictures 
are identical.
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II. Matrix Algebras 
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Any set of matrices                                   
generates an algebra                                by 
taking the closure of the set under the 
operations in the definition. Note that the 
algebra includes products, so is not just the 
span of the set.  
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This is the decomposition of        into irreps of 
the algebra     . 

The Wedderburn Decomposition
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That is, there is some basis for      where all 
elements of the algebra are block-diagonal: 
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The decomposition can be described by a 
block-diagonal generalized BPT, with each 
block giving a product basis for a term

The BPOs form a basis spanning               , with a 
simple action under products

Hence the BPOs are “minimal projections”.  

Algebras from BPTs
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So, we’ve seen that the irrep decomposition of a 
Hilbert space w/r/t an algebra of observables 
generates a state-reduction map onto a smaller 
Hilbert space which preserves the expectation 
values of elements in the algebra.

Given a set of generators of the algebra, we want a 
way to explicitly construct the state-reduction map. 
The main technical result of our paper is an 
algorithm for accomplishing this.

First, though, let’s briefly think about where the 
choice of algebra comes from.

Statement of Our Problem
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In the operational picture, we’re just given a 
set of allowed measurements. 

In the decoherence approach, we have in mind 
that each measurement is implemented by 
some particular interaction Hamiltonian 
between our apparatus and the system, and a 
good measuring apparatus is precisely one for 
which the “pointer states” of the apparatus are 
both correlated with system states and 
classically distinguishable.

Operational vs. Variational
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When the irrep decomposition of the Hilbert 
space with respect to the observables contains 
multiple terms, we think of the Hilbert space as 
having different superselection sectors. Given 
our operation constraints, superpositions of 
states in different sectors are unobservable and 
unpreparable.

If we can prepare the system we can also 
typically let it undergo time evolution, so 
typically we mean that the Hamiltonian does 
not mix superselection sectors. 
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We could instead ask a different question: what are 
the algebras which lead to interesting 
decompositions of a given Hilbert space? This is a 
variational approach, in which we imagine varying 
over possible choices of observables, or 
arrangements of generalized BPTs. Usually we want 
some compatibility between the decompositions 
and the Hamiltonian, like in decoherence.

We can ask, for example, what the “most classical” 
observables are, provided we have a good measure 
of this. I’ll return to this question later. 
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The algebra takes as input a (finite) set of 
observables acting on a (finite-dimensional) 
Hilbert space and outputs the generalized BPT 
which describes the irrep structure of the 
algebra they generate. 

We can use this BPT to write any element of 
the algebra in block-diagonal form, or for state 
reduction.

We’ll construct the BPT by constructing the 
bipartition operators directly.

III. Sketch of the Algorithm
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I won’t be as explicit here as we are in the 
paper, and I won’t prove the correctness of 
each step, just sketch how it works.
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Instead of working directly with observables, it’s 
convenient to work with the projectors onto 
distinct eigenspaces given by their spectral 
decompositions (which generate the same 
algebra): 

In general, projectors in the decomposition of one 
observable will not commute with generators of 
another observable, so to get a set of BPOs which 
are all orthogonal with each other we need to 
decompose these initial projections further.

Projections
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“Scatter” products of projectors, i.e. 
decompose them into new projectors.

The scattering operation reduces rank—the 
resulting projectors are lower-dimensional and 
more fine-grained.

Scattering
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Repeat process until all scattering is trivial 
(projectors reflecting or orthogonal)

Iterating Scattering
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Define a graph structure (“reflection network”): 
projectors are connected if they are reflecting, 
disconnected if orthogonal. Start with the relation 
between all projectors unknown (dashed line), and 
update by scattering to resolve each unknown 
relation:

Graphical Representation
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Need additional criteria: all projections in the 
network should be minimal w/r/t the algebra,  
and there should exist a subset of the 
projectors in the network that sums to the 
identity IA of the algebra.

Reduces to checking properties of the network, 
+ adding additional projectors and repeating 
scattering if necessary—ask me if interested.

Minimality and Completeness
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Finally, to construct the BPT, in each connected 
component we choose a basis for the eigenspace of 
one projector in the BPT, which forms the first 
column of the block. Then we construct the 
remaining columns by traversing the graph between 
this projector and other projectors in the subset, 
which defines isometries between the eigenspaces 
of the projectors.

Constructing the BPT

11/5/2019 Quantum State Reduction - Bipartitions from Observables 32



Jason Pollack

First consider a very simple eight-dimensional 
model to which we can apply the algorithm.

=

IV. Toy Examples
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The reflection network has three connected 
components. For the single-element components, 
we’ll choose to use the same basis: the single-
column blocks are                           .

For the three-element component, choose 

as the basis. As before, take          as the 
first column. Then the isometry is 

so the second column is          . 
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Hence the full BPT is

The Hilbert space decomposition is  

All operators in the algebra have the form 

. In particular, write
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Now we can block-diagonalize the generators by 
mapping the original basis into the BPT basis:
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Consider a single particle with spin ½ and 
orbital angular momentum l. Of course we 
know how to decompose the total angular 
momentum using Clebsch-Gordon coefficients, 
but we can reproduce this result using 
scattering of projections. 

Decomposition of Angular Momentum
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Observables                                     for all axes r

Decompose

Sufficient to consider the algebra generated by 
{Jz, Jx}, since rotations           , etc are in it.

So we need to scatter projections in the set  

. The projectors with 
maximal/minimal values of l are rank 1, so 
do not break under scattering.
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We compute

So the CG result is reproduced, and the BPT is 

Coherences between sectors are not observable. 
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As a toy model of collective observables, we 
consider a bound pair of identical particles on a 
lattice of length D, constrained so that their 
relative position and momentum differ by at 
most one site. We restrict to center of mass 
measurements of both position and 
momentum, and look for the irrep structure of

. 

Collective Observables
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In the position basis, the momentum states are

The spectral projections are

So we need to scatter these states.  
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A calculation I’ll skip shows that          breaks to

, with                                     , and 
similarly for                                       , with 

We have

So for a=0 and b=1, etc, there is no overlap.  
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So the reflection network breaks into two 
components,                      and                    .

Then the BPT consists of two blocks,

That is, the Hilbert space splits into 
superselection sectors corresponding to 
symmetric and antisymmetric configurations: 
an observer sees a composite particle with a 
discrete “charge” which is conserved given 
compatible dynamics.
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So far we’ve worked with block-diagonal BPTs, 
where the span of the bipartition operators 
formed an algebra. 

However, in general this need not be the 
case—operationally, we could imagine we have 
access to certain observables but not their 
products. 

V. Beyond Algebras
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We can consider more general tables, which 
need not have rectangular blocks:

Now each block still defines a state-reduction 
map from        to        , which however need not 
be a tensor factor: we write                          and 
say that         is a partial subsystem of        .    

Partial Bipartitions
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The typical example we have in mind is a set of 
collective degrees of freedom as a partial 
subsystem,                                     , such as the 
reduction from a set of N spins to the total spin: 
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There are many possible partial BPTs which 
reduce onto the same partial subsystem, which 
we can get by e.g. swapping basis elements 
within the same column. Such BPTs with 
different row structure are naturally 
investigated variationally: different BPTs 
preserve coherences differently under time 
evolution, depending on the action of the 
Hamiltonian. 

See our paper for an Ising model calculation, 
which I won’t have time to talk about today.

Ising Model
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Direct QI applications (error correction, 
noiseless subsystems, quantum channel 
design)

Won’t discuss here—talk to me if interested!

V. Applications

11/5/2019 Quantum State Reduction - Bipartitions from Observables 49



Jason Pollack

Think of classical states in AdS/CFT as living in
coarse-grained Hilbert space—track only low-point 
correlation functions of bulk fields

→ Holographic QEC approach to bulk reconstruction

Want to understand how this is implemented in the CFT

In an explicit toy model (e.g. tensor network), could 
use our state-reduction methods directly

E.g. probe complementary nature of bulk by restricting 
to observables inside a lightcone

Check when “bulk” and “boundary” state-reduction 
maps yield same output→construct holographic states

Bulk Reconstruction
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When a field theory has global constraints (e.g. 
gauge/global symmetries), physical Hilbert space 
does not factorize → can’t work with usual mode 
expansion/trace outside subregion

Toy example: 3 qubits with Z2 symmetry

In edge modes program, define states on 
subregions by embedding into larger, ungauged 
Hilbert space (not unique: sum over charged reps)

Our approach: start with allowed operators,
produce state-reduction map (implies diagonal 
embedding into auxiliary Hilbert space)

Edge Modes
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If QG is quantum-mechanical, contains non-field-
theoretic states (superpositions of geometries, 
stringy states, spacetime foam…)

…so states well-described around a fixed background are 
unlikely to be simple factors of the QG Hilbert space (c.f. 
holography/dS complementarity)

In “space from Hilbert space” picture, local spatial 
dofs are emergent

GBPs are a tool which precisely picks out dofs not 
manifest in the full Hilbert space!

Dynamics between these dofs + rest of theory can pick
out classical observables—variational approach? 

Quantum Gravity
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Potentially many other applications

If you have an set of observables you’re interested 
in, our technology may be able to help! We should 
chat…

…and more
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Thank you!
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Minimality
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Completeness
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Partial BPT example
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Ising 1
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Ising 2

11/5/2019 Quantum State Reduction - Bipartitions from Observables 60



Jason Pollack

Ising 3
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