イロト 不同 トイヨト イヨト ヨヨ ろくろ

Recovering a Holographic Geometry from Entanglement

Sebastian Fischetti

1904.04834 with N. Bao, C. Cao, C. Keeler 1904.08423 with N. Engelhardt ongoing with N. Bao, C. Cao, J. Pollack, P. Sabella-Garnier

McGill University

UT Austin October 29, 2019

Sebastian Fischetti

Recovering a Holographic Geometry from Entanglement

Quantum Gravity from AdS/CFT

An ambitious question

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

イロト 不同 トイヨト イヨト ヨヨ ろくろ

Quantum Gravity from AdS/CFT

An ambitious question

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

- Hard to even begin to answer because we don't know what the full formulation of such a theory is!
- We need a framework in which to work: in context of string theory, AdS/CFT gives us a nonperturbative, indirect *definition* of a theory of quantum gravity

Quantum Gravity from AdS/CFT

AdS/CFT Correspondence [Maldacena]

A nonperturbative, background-independent theory of quantum gravity with asymptotically (locally) anti-de Sitter boundary conditions – the "bulk" – is dual to a conformal field theory – the "boundary" – living on (a representative of the conformal structure of) the asymptotic boundary of the bulk.

イロト 不同 トイヨト イヨト ヨヨ ろくろ

Sebastian Fischetti Recovering a Holographic Geometry from Entanglement

Quantum Gravity from AdS/CFT

AdS/CFT Correspondence [Maldacena]

A nonperturbative, background-independent theory of quantum gravity with asymptotically (locally) anti-de Sitter boundary conditions – the "bulk" – is dual to a conformal field theory – the "boundary" – living on (a representative of the conformal structure of) the asymptotic boundary of the bulk.

Work around a limit in which the bulk is well-approximated by a classical geometry:

The Holographic Dictionary

Using AdS/CFT as a framework, we can refine the question:

A slightly less vague question

In AdS/CFT, when and how does (semi)classical gravity emerge from the boundary field theory?

The Holographic Dictionary

Using AdS/CFT as a framework, we can refine the question:

A slightly less vague question

In AdS/CFT, when and how does (semi)classical gravity emerge from the boundary field theory?

Requires understanding what "dual" means: the holographic dictionary

The Holographic Dictionary

Using AdS/CFT as a framework, we can refine the question:

A slightly less vague question

In AdS/CFT, when and how does (semi)classical gravity emerge from the boundary field theory?

- Requires understanding what "dual" means: the holographic dictionary
- Going from the bulk to the boundary is pretty well-understood (e.g. one-point functions of local boundary operators are given by the asymptotic behavior of local bulk fields)
- Going from the boundary to the bulk is harder: this is broadly termed "bulk reconstruction"

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

 $\Downarrow ({\rm AdS/CFT})$

イロト 不同 トイヨト イヨト ヨヨ ろくろ

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

$\Downarrow ({\rm AdS/CFT})$

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

 \Downarrow (classical limit)

When and how does (semi)classical gravity emerge from the boundary field theory?

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

$\Downarrow (\mathrm{AdS}/\mathrm{CFT})$

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

 \Downarrow (classical limit)

When and how does (semi)classical gravity emerge from the boundary field theory?

 $\Downarrow \text{ (probe limit)}$

How are operators on a *fixed* bulk geometry recovered?

Sebastian Fischetti

Recovering a Holographic Geometry from Entanglement

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

$\Downarrow (\mathrm{AdS}/\mathrm{CFT})$

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

 \Downarrow (classical limit)

When and how does (semi)classical gravity emerge from the boundary field theory?

 $\Downarrow \text{ (probe limit)}$

How are operators on a *fixed* bulk geometry recovered?

Sebastian Fischetti

Recovering a Holographic Geometry from Entanglement

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^{d-1}x \, K(X|x) \mathcal{O}(x)$$

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^{d-1}x \, K(X|x) \mathcal{O}(x)$$

• Kernel may be taken to have support on different boundary regions D

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^{d-1}x \, K(X|x) \mathcal{O}(x)$$

• Kernel may be taken to have support on different boundary regions D

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^{d-1}x \, K(X|x) \mathcal{O}(x)$$

- Kernel may be taken to have support on different boundary regions D
- Hints at subregion/subregion duality: a given boundary diamond D can reconstruct operators in some subregion of the bulk

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^{d-1}x \, K(X|x) \mathcal{O}(x)$$

- Kernel may be taken to have support on different boundary regions *D*
- Hints at subregion/subregion duality: a given boundary diamond D can reconstruct operators in some subregion of the bulk
- Stronger hint comes from entanglement entropy

HRT Formula [Ryu, Takayanagi, Hubeny, Rangamani]

If $\rho_R = \operatorname{Tr}_{\overline{R}} \rho$ is the reduced state associated to some region R and the bulk is well-approximated by a classical geometry obeying Einstein gravity, then

$$S[R] \equiv -\operatorname{Tr}(\rho_R \ln \rho_R) = \frac{\operatorname{Area}[X_R]}{4G\hbar},$$

where X_R is the smallest-area codimension-two extremal surface anchored to ∂R .

HRT Formula [Ryu, Takayanagi, Hubeny, Rangamani]

If $\rho_R = \operatorname{Tr}_{\overline{R}} \rho$ is the reduced state associated to some region R and the bulk is well-approximated by a classical geometry obeying Einstein gravity, then

$$S[R] \equiv -\operatorname{Tr}(\rho_R \ln \rho_R) = \frac{\operatorname{Area}[X_R]}{4G\hbar},$$

where X_R is the smallest-area codimension-two extremal surface anchored to ∂R .

• X_R is generically spacelike separated from the causal diamond D[R], so R is sensitive to more of the bulk than expected from just causal structure

Extensions 000000

Holographic Entanglement Entropy

- X_R is generically spacelike separated from the causal diamond D[R], so R is sensitive to more of the bulk than expected from just causal structure
- Ideas from quantum error correction show that X_R defines the region of the bulk to which R is sensitive: bulk operators in the *entanglement wedge* defined by X_R can be represented by CFT operators in D[R]

[Dong, Harlow, Wall; Faulkner, Lewkowycz]

- X_R is generically spacelike separated from the causal diamond D[R], so R is sensitive to more of the bulk than expected from just causal structure
- Ideas from quantum error correction show that X_R defines the region of the bulk to which R is sensitive: bulk operators in the *entanglement wedge* defined by X_R can be represented by CFT operators in D[R]

[Dong, Harlow, Wall; Faulkner, Lewkowycz]

Extensions 000000

Holographic Entanglement Entropy

- X_R is generically spacelike separated from the causal diamond D[R], so R is sensitive to more of the bulk than expected from just causal structure
- Ideas from quantum error correction show that X_R defines the region of the bulk to which R is sensitive: bulk operators in the *entanglement wedge* defined by X_R can be represented by CFT operators in D[R]

[Dong, Harlow, Wall; Faulkner, Lewkowycz]

• What about recovering the bulk geometry itself and its properties?

Holographic EE	
000	

Moving Up

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

 $\Downarrow (\mathrm{AdS}/\mathrm{CFT})$

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

 \Downarrow (classical limit)

When and how does (semi)classical gravity emerge from the boundary field theory?

 \Downarrow (probe limit)

How are operators on a *fixed* bulk geometry recovered?

Sebastian Fischetti

Recovering a Holographic Geometry from Entanglement

The HRT formula clearly connects bulk geometry to boundary entanglement, and its key role in recovering bulk operators on a fixed background strongly suggests it should play a role in recovering the geometry as well [Van Raamsdonk]. Does it?

Some partial progress:

 Dynamics: For perturbations of vacuum, HRT implies the perturbative Einstein equations in the bulk [Lashkari, Faulkner, Guica,

Hartman, McDermott, Myers, Van Raamsdonk, ...]

Some partial progress:

- Dynamics: For perturbations of vacuum, HRT implies the perturbative Einstein equations in the bulk [Lashkari, Faulkner, Guica, Hartman, McDermott, Myers, Van Raamsdonk, ...]
- Gravitational thermodynamics: generic area laws in the bulk can be related to monotonicity properties of entropy
 - A coarse-grained entropy defined by fixing a portion of the bulk geometry gives area law along (spacelike) foliations of apparent horizons [Engelhardt, Wall]
 - Casini-Huerta *c*-theorem relates to mixed-signature area laws in bulk, including along early-time event horizons of black holes formed from collapse [Engelhardt, SF]

Some partial progress:

- Dynamics: For perturbations of vacuum, HRT implies the perturbative Einstein equations in the bulk [Lashkari, Faulkner, Guica, Hartman, McDermott, Myers, Van Raamsdonk, ...]
- Gravitational thermodynamics: generic area laws in the bulk can be related to monotonicity properties of entropy
 - A coarse-grained entropy defined by fixing a portion of the bulk geometry gives area law along (spacelike) foliations of apparent horizons [Engelhardt, Wall]
 - Casini-Huerta c-theorem relates to mixed-signature area laws in bulk, including along early-time event horizons of black holes formed from collapse [Engelhardt, SF]
- Causal structure: instead of EE, can use the singularity structure of boundary correlators to deduce the causal structure of (part of) the causal wedge of the bulk [Engelhardt, Horowitz; Engelhardt, SF]

イロト イヨト イヨト イヨト ヨヨ ろくで

Here, I'm interested in a more fine-grained question:

Does knowledge of the entanglement entropy of all regions (i.e. the areas of all HRT surfaces) determine the bulk geometry? How?

- Obviously EE can't recover the full geometry, since there can be regions that HRT surfaces don't reach
- The general expectation has been that EE can recover geometry wherever HRT surfaces reach, but never understood in detail

A Geometric Problem

Assumptions:

- Dimension of bulk geometry Mis $d \ge 4$, with *finite* boundary ∂M
- A portion R of M is foliated by a continuous (d 2)-parameter family {Σ(λⁱ)} of (planar) two-dimensional spacelike extremal surfaces anchored to ∂M

A Geometric Problem

Assumptions:

- Dimension of bulk geometry Mis $d \ge 4$, with *finite* boundary ∂M
- A portion R of M is foliated by a continuous (d 2)-parameter family {Σ(λⁱ)} of (planar) two-dimensional spacelike extremal surfaces anchored to ∂M

イロト 不同 トイヨト イヨト ヨヨ ろくろ

Claim: the geometry in \mathcal{R} is uniquely fixed by the metric and extrinsic curvature of ∂M , the curves $\partial \Sigma(\lambda^i)$, and the variations of the areas of the $\Sigma(\lambda^i)$

Four steps, inspired by [Alexakis, Balehowsky, Nachman], using inverse boundary value problems (same sort of techniques used in e.g. medical imaging or geophysics)

Gauge fix: introduce a unique coordinate system $\{\lambda^i, x^{\alpha}\}$ in the region \mathcal{R} , with the x^{α} conformally flat coordinates on $\Sigma(\lambda^i)$: $ds_{\Sigma}^2 = e^{2\phi}[(dx^1)^2 + (dx^2)^2]$

Four steps, inspired by [Alexakis, Balehowsky, Nachman], using inverse boundary value problems (same sort of techniques used in e.g. medical imaging or geophysics)

- Gauge fix: introduce a unique coordinate system $\{\lambda^i, x^{\alpha}\}$ in the region \mathcal{R} , with the x^{α} conformally flat coordinates on $\Sigma(\lambda^i)$: $ds_{\Sigma}^2 = e^{2\phi}[(dx^1)^2 + (dx^2)^2]$
- 2 Showing that the $g^{ij} \equiv g^{ab}(d\lambda^i)_a(d\lambda^j)_b$ are fixed reduces to an elliptic inverse boundary value problem on each $\Sigma(\lambda^i)$

Four steps, inspired by [Alexakis, Balehowsky, Nachman], using inverse boundary value problems (same sort of techniques used in e.g. medical imaging or geophysics)

- Gauge fix: introduce a unique coordinate system $\{\lambda^i, x^{\alpha}\}$ in the region \mathcal{R} , with the x^{α} conformally flat coordinates on $\Sigma(\lambda^i)$: $ds_{\Sigma}^2 = e^{2\phi}[(dx^1)^2 + (dx^2)^2]$
- 2 Showing that the $g^{ij} \equiv g^{ab}(d\lambda^i)_a(d\lambda^j)_b$ are fixed reduces to an elliptic inverse boundary value problem on each $\Sigma(\lambda^i)$

イロト 不同 トイヨト イヨト ヨヨ ろくろ

B By "tilting" each $\Sigma(\lambda^i)$ to a nearby foliation, the $g^{\alpha i} \equiv g^{ab}(dx^{\alpha})_a(d\lambda^i)_b$ are obtained by solving a system of (algebraic) linear equations (with known coefficients)

Four steps, inspired by [Alexakis, Balehowsky, Nachman], using inverse boundary value problems (same sort of techniques used in e.g. medical imaging or geophysics)

- Gauge fix: introduce a unique coordinate system $\{\lambda^i, x^{\alpha}\}$ in the region \mathcal{R} , with the x^{α} conformally flat coordinates on $\Sigma(\lambda^i)$: $ds_{\Sigma}^2 = e^{2\phi}[(dx^1)^2 + (dx^2)^2]$
- 2 Showing that the $g^{ij} \equiv g^{ab}(d\lambda^i)_a(d\lambda^j)_b$ are fixed reduces to an elliptic inverse boundary value problem on each $\Sigma(\lambda^i)$
- **B** By "tilting" each $\Sigma(\lambda^i)$ to a nearby foliation, the $g^{\alpha i} \equiv g^{ab}(dx^{\alpha})_a(d\lambda^i)_b$ are obtained by solving a system of (algebraic) linear equations (with known coefficients)
- **4** The requirement that the $\Sigma(\lambda^i)$ all be extremal yields a hyperbolic evolution equation for ϕ , which has a unique solution

00000 0000 00000 00000			Geometric Bulk Reconstruction	
	0000	000	000000	00000

The Jacobi (or Stability) Operator

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ 釣ぬ⊙

Sebastian Fischetti
0000 000	000000	00000

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

0000 000 0000 0000			Geometric Bulk Reconstruction	
	0000	000	000000	000000

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

		Geometric Bulk Reconstruction	
0000	000	000000	000000

If $\Sigma(s)$ are all geodesics with tangent t^a , deviation vector η^a obeys the equation of geodesic deviation

$$0 = t^b \nabla_b (t^c \nabla_c \eta^a) + R_{bcd}{}^a t^b t^d \eta^c$$

イロト イヨト イヨト イヨト ヨヨ ろくで

		Geometric Bulk Reconstruction	
0000	000	000000	000000

If $\Sigma(s)$ are all extremal surfaces, deviation vector η^a obeys the Jacobi equation

$$0 = D^2 \eta^a + \underbrace{\left(K^{acd}K_{bcd} + P^{ac}\sigma^{de}R_{cdbe}\right)}_{\text{curvature terms} \equiv Q^a_{\ b}} \eta^b \equiv J\eta^a$$

イロト イヨト イヨト イヨト ヨヨ ろくで

		Geometric Bulk Reconstruction	
0000 000	0 0	000000	00000

- Second variations of the area of an extremal surface Σ under deformations of $\partial \Sigma$ give information about its Jacobi operator
- Extend Σ to an arbitrary two-parameter family $\Sigma(s_1, s_2)$ of extremal surfaces, with $\Sigma(0, 0) = \Sigma$ and deviation vectors $\eta_1^a = (\partial_{s_1})^a$, $\eta_2^a = (\partial_{s_2})^a$

		Geometric Bulk Reconstruction	
0000 000	0 0	000000	00000

- Second variations of the area of an extremal surface Σ under deformations of $\partial \Sigma$ give information about its Jacobi operator
- Extend Σ to an arbitrary two-parameter family $\Sigma(s_1, s_2)$ of extremal surfaces, with $\Sigma(0, 0) = \Sigma$ and deviation vectors $\eta_1^a = (\partial_{s_1})^a$, $\eta_2^a = (\partial_{s_2})^a$
- The variation of the area $A(s_1, s_2)$ is a boundary term:

$$\frac{\partial^2 A}{\partial s_1 \partial s_2} \bigg|_{s_1 = 0 = s_2} = \int_{\partial \Sigma} \eta_2^a D_N(\eta_1)_a + (\text{known boundary stuff})$$

	aphic EE Geometric Bulk	Reconstruction Extensio
0000 000	000000	00000

- Second variations of the area of an extremal surface Σ under deformations of $\partial \Sigma$ give information about its Jacobi operator
- Extend Σ to an arbitrary two-parameter family $\Sigma(s_1, s_2)$ of extremal surfaces, with $\Sigma(0, 0) = \Sigma$ and deviation vectors $\eta_1^a = (\partial_{s_1})^a$, $\eta_2^a = (\partial_{s_2})^a$
- The variation of the area $A(s_1, s_2)$ is a boundary term:

$$\frac{\partial^2 A}{\partial s_1 \partial s_2} \bigg|_{s_1 = 0 = s_2} = \int_{\partial \Sigma} \eta_2^a D_N(\eta_1)_a + (\text{known boundary stuff})$$

• So knowing how the area varies as the shape of $\partial \Sigma$ is varied yields the Dirichlet-to-Neumann map of J:

$$\Psi: \eta^a|_{\partial\Sigma} \mapsto D_N \eta^a|_{\partial\Sigma}$$
 such that $J\eta^a = 0$

		Geometric Bulk Reconstruction	
0000	000	0000000	000000

■ Inverse boundary value problem: if $D_1^{\dagger}D_1 + Q_1$ and $D_2^{\dagger}D_2 + Q_2$ acting on a vector bundle on a Riemann surface have the same Dirichlet-to-Neumann map, then D_1 , D_2 and Q_1 , Q_2 are the same (up to gauge) [Albin, Guillarmou, Tzou, Uhlmann]

		Geometric Bulk Reconstruction	
0000	000	0000000	00000

- Inverse boundary value problem: if $D_1^{\dagger}D_1 + Q_1$ and $D_2^{\dagger}D_2 + Q_2$ acting on a vector bundle on a Riemann surface have the same Dirichlet-to-Neumann map, then D_1 , D_2 and Q_1 , Q_2 are the same (up to gauge) [Albin, Guillarmou, Tzou, Uhlmann]
- So Jacobi operator J of each $\Sigma(\lambda^i)$ is determined by boundary data up to choice of basis on the normal bundle

		Geometric Bulk Reconstruction	
0000	000	0000000	00000

- Inverse boundary value problem: if $D_1^{\dagger}D_1 + Q_1$ and $D_2^{\dagger}D_2 + Q_2$ acting on a vector bundle on a Riemann surface have the same Dirichlet-to-Neumann map, then D_1 , D_2 and Q_1 , Q_2 are the same (up to gauge) [Albin, Guillarmou, Tzou, Uhlmann]
- So Jacobi operator J of each $\Sigma(\lambda^i)$ is determined by boundary data up to choice of basis on the normal bundle
- By construction, coordinate basis vector fields (∂_{λi})^a are deviation vectors along a family of extremal surfaces, so J(∂_{λi})^a = 0
- Use this to fix the basis $\{(n^i)_a\}$ on the normal bundle by requiring that $(n^i)_a(\partial_{\lambda^j})^a = \delta^i{}_j$, which fixes $(n^i)_a = (d\lambda^i)_a$

	Geometric Bulk Reconstruction	
	0000000	

- Inverse boundary value problem: if $D_1^{\dagger}D_1 + Q_1$ and $D_2^{\dagger}D_2 + Q_2$ acting on a vector bundle on a Riemann surface have the same Dirichlet-to-Neumann map, then D_1 , D_2 and Q_1 , Q_2 are the same (up to gauge) [Albin, Guillarmou, Tzou, Uhlmann]
- So Jacobi operator J of each $\Sigma(\lambda^i)$ is determined by boundary data up to choice of basis on the normal bundle
- By construction, coordinate basis vector fields (∂_{λi})^a are deviation vectors along a family of extremal surfaces, so J(∂_{λi})^a = 0
- Use this to fix the basis $\{(n^i)_a\}$ on the normal bundle by requiring that $(n^i)_a(\partial_{\lambda^j})^a = \delta^i{}_j$, which fixes $(n^i)_a = (d\lambda^i)_a$
- Metric-compatibility of connection in this gauge requires $D_a g^{ij} = 0$, which fixes g^{ij}

	Geometric Bulk Reconstruction	
	0000000	

• Intuition: since the $g^{\alpha i}$ know about "mixing" between directions normal and tangent to $\Sigma(\lambda^i)$, we can mix them by "tilting" the folitation $\Sigma(\lambda^i)$ to a family of foliations $\Sigma(s; \lambda_s^i)$:

	Geometric Bulk Reconstruction	
	0000000	

• Intuition: since the $g^{\alpha i}$ know about "mixing" between directions normal and tangent to $\Sigma(\lambda^i)$, we can mix them by "tilting" the folitation $\Sigma(\lambda^i)$ to a family of foliations $\Sigma(s; \lambda_s^i)$:

	Geometric Bulk Reconstruction	
	0000000	

• Intuition: since the $g^{\alpha i}$ know about "mixing" between directions normal and tangent to $\Sigma(\lambda^i)$, we can mix them by "tilting" the folitation $\Sigma(\lambda^i)$ to a family of foliations $\Sigma(s; \lambda_s^i)$:

• The $\{\lambda_s^i, x_s^\alpha\}$ give a new coordinate system (related to the $\{\lambda^i, x^\alpha\}$ by a diffeomorphism generated by η^a):

 $\lambda^i_s(p) = \lambda^i(p) + s\eta^i(p) + \mathcal{O}(s^2), \qquad x^\alpha_s(p) = x^\alpha(p) + s\dot{x}^\alpha(p) + \mathcal{O}(s^2)$

	Geometric Bulk Reconstruction	
	0000000	

• Expanding $g_s^{ij} \equiv g^{ab} (d\lambda_s^i)_a (d\lambda_s^j)_b$ to first order in s, get

$$\underbrace{\frac{dg_s^{ij}}{ds}}_{\text{known}}\Big|_{s=0} - 2g^{k(i}\partial_k\eta^{j)} - \eta^k\partial_kg^{ij} = \underbrace{\dot{x}^{\alpha}\partial_{\alpha}g^{ij} + 2g^{\alpha(i}\partial_{\alpha}\eta^{j)}}_{\text{linear in unknowns }\dot{x}^{\alpha}, \ g^{\alpha i}}$$

	Geometric Bulk Reconstruction	
	0000000	

• Expanding $g_s^{ij} \equiv g^{ab} (d\lambda_s^i)_a (d\lambda_s^j)_b$ to first order in s, get

$$\underbrace{\frac{dg_s^{ij}}{ds}}_{\text{known}}\Big|_{s=0} - 2g^{k(i}\partial_k\eta^{j)} - \eta^k\partial_kg^{ij} = \underbrace{\dot{x}^{\alpha}\partial_{\alpha}g^{ij} + 2g^{\alpha(i}\partial_{\alpha}\eta^{j)}}_{\text{linear in unknowns }\dot{x}^{\alpha}, \ g^{\alpha i}}$$

• For $d \ge 4$, there are enough linear equations to determine all the unknowns, and can recover $g^{\alpha i}$ (d = 3 case studied by [Alexakis, Balehowsky, Nachman] is much harder – need to compute the deformation \dot{x}^{α} of the isothermal coordinates)

		Geometric Bulk Reconstruction	
0000	000	0000000	000000

• Since $g_{\alpha\beta} = e^{2\phi} \delta_{\alpha\beta}$, the extremality condition requires

$$K^{i} = 0 \quad \Rightarrow \quad \partial_{\alpha} f^{\alpha}{}_{i} + 2f^{\alpha}{}_{i}\partial_{\alpha}\phi - 2\partial_{i}\phi = 0 \qquad (*)$$

with $f^{\alpha}{}_{i}$ a known function of $g^{ij}, g^{\alpha i}$

	Geometric Bulk Reconstruction	
0000	0000000	000000

• Since $g_{\alpha\beta} = e^{2\phi} \delta_{\alpha\beta}$, the extremality condition requires

$$K^{i} = 0 \quad \Rightarrow \quad \partial_{\alpha} f^{\alpha}{}_{i} + 2f^{\alpha}{}_{i}\partial_{\alpha}\phi - 2\partial_{i}\phi = 0 \tag{(*)}$$

with $f^{\alpha}{}_{i}$ a known function of $g^{ij},\,g^{\alpha i}$

Construct some periodic cycle in the λⁱ, corresponding to a "tube" swept out by the Σ(λⁱ)

	Geometric Bulk Reconstruction	
0000	0000000	000000

• Since $g_{\alpha\beta} = e^{2\phi} \delta_{\alpha\beta}$, the extremality condition requires

$$K^{i} = 0 \quad \Rightarrow \quad \partial_{\alpha} f^{\alpha}{}_{i} + 2f^{\alpha}{}_{i}\partial_{\alpha}\phi - 2\partial_{i}\phi = 0 \tag{(*)}$$

with $f^{\alpha}{}_{i}$ a known function of $g^{ij},\,g^{\alpha i}$

Construct some periodic cycle in the λⁱ, corresponding to a "tube" swept out by the Σ(λⁱ)

	Geometric Bulk Reconstruction	
0000	0000000	000000

• Since $g_{\alpha\beta} = e^{2\phi} \delta_{\alpha\beta}$, the extremality condition requires

$$K^{i} = 0 \quad \Rightarrow \quad \partial_{\alpha} f^{\alpha}{}_{i} + 2f^{\alpha}{}_{i}\partial_{\alpha}\phi - 2\partial_{i}\phi = 0 \tag{(*)}$$

with $f^{\alpha}{}_{i}$ a known function of $g^{ij},\,g^{\alpha i}$

• Construct some periodic cycle in the λ^i , corresponding to a "tube" swept out by the $\Sigma(\lambda^i)$

0000 000	0000000	000000

• Since $g_{\alpha\beta} = e^{2\phi} \delta_{\alpha\beta}$, the extremality condition requires

$$K^{i} = 0 \quad \Rightarrow \quad \partial_{\alpha} f^{\alpha}{}_{i} + 2f^{\alpha}{}_{i}\partial_{\alpha}\phi - 2\partial_{i}\phi = 0 \tag{(*)}$$

with $f^{\alpha}{}_{i}$ a known function of $g^{ij}, g^{\alpha i}$

- Construct some periodic cycle in the λ^i , corresponding to a "tube" swept out by the $\Sigma(\lambda^i)$
- Evolve (*) inwards from the boundary along this tube to fix φ uniquely on every Σ(λⁱ) on it

Context 0000	Holographic EE 000	Geometric Bulk Reconstruction 000000●	Extensions 000000

• Applies to two-dimensional extremal surfaces in an ambient spacetime of any dimension (and signature), but relevance to bulk reconstruction is in d = 4, since then HRT surfaces are two-dimensional

	Geometric Bulk Reconstruction	

- Applies to two-dimensional extremal surfaces in an ambient spacetime of any dimension (and signature), but relevance to bulk reconstruction is in d = 4, since then HRT surfaces are two-dimensional
- Argument requires consistency of highly overdetermined systems of equations; this is expected on general grounds, as only the right structure of entanglement entropy can possibly correspond to a geometric dual
 - Gives (highly implicit) *necessary* conditions for the existence of a dual geometry

	Geometric Bulk Reconstruction	

- Applies to two-dimensional extremal surfaces in an ambient spacetime of any dimension (and signature), but relevance to bulk reconstruction is in d = 4, since then HRT surfaces are two-dimensional
- Argument requires consistency of highly overdetermined systems of equations; this is expected on general grounds, as only the right structure of entanglement entropy can possibly correspond to a geometric dual
 - Gives (highly implicit) *necessary* conditions for the existence of a dual geometry

イロト 不同 トイヨト イヨト ヨヨ ろくろ

• Only requires knowledge of *variations* of entropy, not the actual entanglement entropy of any region

		Geometric Bulk Reconstruction	
0000	000	000000	000000

■ Can probe inside black holes!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Geometric Bulk Reconstruction	
	000000	

■ Can probe inside black holes!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

But still stays away from singularities...

				Extension
•••••	0000	000	0000000	00000

A Reconstructive Formula

• Our result is *almost* completely constructive; it gives a much more precise connection between boundary entanglement and bulk geometry than just HRT

A Reconstructive Formula

- Our result is *almost* completely constructive; it gives a much more precise connection between boundary entanglement and bulk geometry than just HRT
- The only non-constructive step uses the uniqueness theorem of [Albin, Guillarmou, Tzou, Uhlmann] to show that boundary data uniquely fixes D and Q in the Jacobi operator $D^2 + Q$; is there a constructive analog?

A Reconstructive Formula

- Our result is *almost* completely constructive; it gives a much more precise connection between boundary entanglement and bulk geometry than just HRT
- The only non-constructive step uses the uniqueness theorem of [Albin, Guillarmou, Tzou, Uhlmann] to show that boundary data uniquely fixes D and Q in the Jacobi operator $D^2 + Q$; is there a constructive analog?
- Almost: a closely-related result gives an *explicit* method for recovering Q from the Dirichlet-to-Neumann map of the operator $\nabla^2 + Q$ on some domain in \mathbb{R}^2 , where ∇^2 is the usual (flat-space) Laplacian [Novikov, Santacesaria]
- Generalizing this to our case would give an explicit algorithm for recovering the metric from boundary entanglement

Moving Further Up

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

$\Downarrow ({\rm AdS/CFT})$

In AdS/CFT, how do the CFT degrees of freedom rearrange themselves to look like a gravitational theory?

\Downarrow (classical limit)

When and how does (semi)classical gravity emerge from the boundary field theory?

 $\Downarrow \text{ (probe limit)}$

How are operators on a *fixed* bulk geometry recovered?

Sebastian Fischetti

Recovering a Holographic Geometry from Entanglement

Quantum Corrections to EE

Sub-leading effects in $G\hbar$ (1/N² in CFT) introduce corrections:

Engelhardt-Wall Formula

Under perturbative quantum corrections,

$$S[R] = S_{\text{gen}}[\mathcal{X}_R] \equiv \frac{\text{Area}[\mathcal{X}_R]}{4G\hbar} + S_{\text{out}}[\mathcal{X}_R],$$

where \mathcal{X}_R is anchored to ∂R and extremizes S_{gen} (a "quantum extremal surface"), and $S_{\text{out}}[\mathcal{X}_R]$ is the von Neumann entropy of any bulk quantum fields "outside" \mathcal{X}_R [Faulkner, Lewkowycz, Maldacena; Dong, Lewkowycz]

Quantum Corrections to EE

Sub-leading effects in $G\hbar$ (1/N² in CFT) introduce corrections:

Engelhardt-Wall Formula

Under perturbative quantum corrections,

$$S[R] = S_{\text{gen}}[\mathcal{X}_R] \equiv \frac{\text{Area}[\mathcal{X}_R]}{4G\hbar} + S_{\text{out}}[\mathcal{X}_R],$$

where \mathcal{X}_R is anchored to ∂R and extremizes S_{gen} (a "quantum extremal surface"), and $S_{\text{out}}[\mathcal{X}_R]$ is the von Neumann entropy of any bulk quantum fields "outside" \mathcal{X}_R [Faulkner, Lewkowycz, Maldacena; Dong, Lewkowycz]

イロト 不同 トイヨト イヨト ヨヨ ろくろ

(Note: X_R can reach further into the bulk than X_R , e.g. late-time horizons of evaporating black holes [Almheiri, Engelhardt, Marolf, Maxfield; Penington])

Incorporating Quantum Effects

- In order to really start probing quantum gravity effects, should be keeping track of these corrections!
- Can consider the same sort of setup, but with foliation by classical extremal surfaces X_R replaced by quantum extremal surfaces \mathcal{X}_R

Extensions 000000

イロト 不同 トイヨト イヨト ヨヨ ろくろ

Incorporating Quantum Effects

- In order to really start probing quantum gravity effects, should be keeping track of these corrections!
- Can consider the same sort of setup, but with foliation by classical extremal surfaces X_R replaced by quantum extremal surfaces \mathcal{X}_{R}
- Because S_{out} is not a local geometric functional, the Jacobi equation gets quantum-corrected to an integro-differential equation [Engelhardt, SF]:

$$D^2 \eta^a + Q^a{}_b \eta^b + 4G\hbar \int_{\Sigma'} P^{ab} \frac{\mathcal{D}^2 S_{\text{out}}}{\mathcal{D}\Sigma^c(p')\mathcal{D}\Sigma^b} \eta^c(p') = 0,$$

with $\mathcal{D}S_{\text{out}}/\mathcal{D}\Sigma^a$ a functional derivative

イロト 不同 トイヨト イヨト ヨヨ ろくろ

Incorporating Quantum Effects

- In order to really start probing quantum gravity effects, should be keeping track of these corrections!
- Can consider the same sort of setup, but with foliation by classical extremal surfaces X_R replaced by quantum extremal surfaces \mathcal{X}_R
- Because S_{out} is not a local geometric functional, the Jacobi equation gets quantum-corrected to an integro-differential equation [Engelhardt, SF]:

$$D^2\eta^a + \int_{\Sigma'} \widetilde{Q}^a{}_b(p,p')\eta^b(p') = 0,$$

with $\widetilde{Q}^{a}{}_{b}(p,p')$ a distributional potential

Incorporating Quantum Effects

- In order to really start probing quantum gravity effects, should be keeping track of these corrections!
- Can consider the same sort of setup, but with foliation by classical extremal surfaces X_R replaced by quantum extremal surfaces \mathcal{X}_R
- Because S_{out} is not a local geometric functional, the Jacobi equation gets quantum-corrected to an integro-differential equation [Engelhardt, SF]:

$$D^2\eta^a+\,\int_{\Sigma'} \widetilde{Q}^a{}_b(p,p')\eta^b(p')=0,$$

with $\widetilde{Q}^{a}{}_{b}(p,p')$ a distributional potential

• Are D and $\tilde{Q}^a{}_b$ determined by boundary data just as they are in the classical case? If so, can generalize argument
			Extensions
0000	000	000000	000000

Higher Curvature Corrections

 Turning on α' corrections changes the bulk gravitational dynamics to include higher-curvature corrections

Sebastian Fischetti

Higher Curvature Corrections

- Turning on α' corrections changes the bulk gravitational dynamics to include higher-curvature corrections
- HRT formula changes: area functional becomes another geometric functional [Dong; Camps]
- \blacksquare Perturbations give rise to a generalized Jacobi operator \widetilde{J} that depends on the perturbed area functional

Higher Curvature Corrections

- Turning on α' corrections changes the bulk gravitational dynamics to include higher-curvature corrections
- HRT formula changes: area functional becomes another geometric functional [Dong; Camps]
- Perturbations give rise to a generalized Jacobi operator \widetilde{J} that depends on the perturbed area functional
- If *J* be recovered from boundary data, can likewise generalize the argument to recover the bulk even when it includes these higher-curvature corrections

イロト イヨト イヨト イヨト ヨヨ ろくで

	Extensions
	00000

• Argued that for a 4*d* classical bulk, the bulk geometry near an HRT surface is fixed by entanglement entropy of the boundary, nicely connecting bulk reconstruction in AdS/CFT and inverse boundary value problems

	Extensions
	000000

- Argued that for a 4*d* classical bulk, the bulk geometry near an HRT surface is fixed by entanglement entropy of the boundary, nicely connecting bulk reconstruction in AdS/CFT and inverse boundary value problems
- To actually start probing quantum effects, need to extend these results to (i) an *explicit* reconstruction that (ii) includes perturbative quantum corrections to the HRT formula; the framework for both exists, and this work is ongoing

	Extensions
	000000

- Argued that for a 4*d* classical bulk, the bulk geometry near an HRT surface is fixed by entanglement entropy of the boundary, nicely connecting bulk reconstruction in AdS/CFT and inverse boundary value problems
- To actually start probing quantum effects, need to extend these results to (i) an *explicit* reconstruction that (ii) includes perturbative quantum corrections to the HRT formula; the framework for both exists, and this work is ongoing
- Even geometry where HRT surfaces don't reach should be recoverable somehow; from what? Quantum extremal surfaces? Other measures of entanglement?

	Extensions
	000000

- Argued that for a 4*d* classical bulk, the bulk geometry near an HRT surface is fixed by entanglement entropy of the boundary, nicely connecting bulk reconstruction in AdS/CFT and inverse boundary value problems
- To actually start probing quantum effects, need to extend these results to (i) an *explicit* reconstruction that (ii) includes perturbative quantum corrections to the HRT formula; the framework for both exists, and this work is ongoing
- Even geometry where HRT surfaces don't reach should be recoverable somehow; from what? Quantum extremal surfaces? Other measures of entanglement?
- More generalizations: (d 2)-dimensional surfaces in higher dimension d; higher-curvature corrections; how generic is the assumption of a foliation?

Introduce arbitrary coordinate system $\{y^{\alpha}\}$ on $\Sigma \subset \mathbb{R}^2$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国国 のQ@

Sebastian Fischetti

- Introduce arbitrary coordinate system $\{y^{\alpha}\}$ on $\Sigma \subset \mathbb{R}^2$
- Extend $g_{\alpha\beta}$ to all of \mathbb{R}^2 so that $g_{\alpha\beta} = \delta_{\alpha\beta}$ away from Σ , and $g_{\alpha\beta}$ is known everywhere outside Σ
- There exists a unique set of isothermal coordinates $\{x^{\alpha}\}$ on \mathbb{R}^2 such that $x^{\alpha}(y) \to y^{\alpha}$ at large y^{α} [Ahlfors]

- Introduce arbitrary coordinate system $\{y^{\alpha}\}$ on $\Sigma \subset \mathbb{R}^2$
- Extend g_{αβ} to all of ℝ² so that g_{αβ} = δ_{αβ} away from Σ, and g_{αβ} is known everywhere outside Σ
- There exists a unique set of isothermal coordinates $\{x^{\alpha}\}$ on \mathbb{R}^2 such that $x^{\alpha}(y) \to y^{\alpha}$ at large y^{α} [Ahlfors]
- For any g_1, g_2 on Σ with the same Ψ , the corresponding coordinates $x_1^{\alpha}(y), x_2^{\alpha}(y)$ agree outside Σ and on $\partial \Sigma$

- Introduce arbitrary coordinate system $\{y^{\alpha}\}$ on $\Sigma \subset \mathbb{R}^2$
- Extend $g_{\alpha\beta}$ to all of \mathbb{R}^2 so that $g_{\alpha\beta} = \delta_{\alpha\beta}$ away from Σ , and $g_{\alpha\beta}$ is known everywhere outside Σ
- There exists a unique set of isothermal coordinates $\{x^{\alpha}\}$ on \mathbb{R}^2 such that $x^{\alpha}(y) \to y^{\alpha}$ at large y^{α} [Ahlfors]
- For any g_1, g_2 on Σ with the same Ψ , the corresponding coordinates $x_1^{\alpha}(y), x_2^{\alpha}(y)$ agree outside Σ and on $\partial \Sigma$

So for any two metrics g_1 , g_2 on Σ with the same boundary data, there exists a set of coordinates $\{x^{\alpha}\}$ on Σ in which both are conformally flat:

$$ds_{\Sigma}^{2} = e^{2\phi} \left((dx^{1})^{2} + (dx^{2})^{2} \right)$$

Sebastian Fischetti