Theory Group Seminar, 15 October 2013
Dr. Paul Chesler, Harvard University
Holographic turbulence
abstract
According to holographic duality, turbulent fluid flows encode the evolution of certain black holes in one higher spacetime dimension. Holographic duality can thus be exploited to gain insight into the evolution of black holes from our understanding of turbulence and vice versa. I will discuss both normal and superfluid turbulence and their dual gravitational description. I will argue that the Kolmogorov scaling observed in normal turbulence implies that dual black holes have a fractal-like structure. Likewise, based on the evolution of black holes I will demonstrate that two dimensional superfluid turbulence enjoys a direct energy cascade to the UV. This later observation stands in stark contrast to normal fluids in two dimensions, where enstrophy conservation implies an inverse energy cascade to the IR.